

Oil Spill Model Development Northwest Canadian Pacific Coast Technical Background

Submitted to

Living Oceans Society
Offshore Oil and Gas Campaign

Sointula, British Columbia 2007 August 14

Submitted by

Triton Consultants Ltd.

3530 West 43rd Avenue, Vancouver, British Columbia V6N 3J9 CANADA Phone: (604) 263-3500 Fax: (604) 676-2252 Email: info@triton.ca URL: www.triton.ca

Table of Contents

1.0	Introduction	1
1.1	Model Selection	2
1.2	Description of GNOME	3
2.0	METHODOLOGY	3
2.1	Reactivation of Existing Hecate Domain Grid	4
2.2	Construction of Douglas Channel Grid	6
2.3	Hydrodynamic Model Selection	8
2.4	Hydraulic Modelling	9
2.5	Development of GNOMEUtil	14
2.6	Wind Fields	17
2.7	GNOME Modelling	19
3.0	References	20
Appe	ndices	
Appei	ndix A Wind Speed/Wind Direction Histograms - January	
Appe	ndix B Wind Speed/Wind Direction Histograms – July	
Appei	ndix C GNOME Scenario Summary	

1.0 INTRODUCTION

In January 2007, the Living Oceans Society (Living Oceans), Sointula, B.C. requested Triton Consultants Ltd., an oceanographic and engineering consultancy based in Vancouver, to develop an oil spill model of the northwest Canadian Pacific coast. The aim of this model was to assess the potential impact of an oil spill on the BC coast. Living Ocean's Offshore Oil and Gas Campaign has a goal to clearly demonstrate the risks of offshore oil activity through application of internationally-accepted scientific methods. The fate of oil spilled during drilling operations or from damaged tankers was investigated by Living Oceans using this model with assistance from Triton and US NOAA's National Ocean Service of Response and Restoration. Modelling efforts were concentrated on potential oil drilling operations in the Queen Charlotte Basin (Figure 1) and shipping operations in Douglas Channel (Figure 2) as these pose the most immediate risks to the coast.

This technical report described the background engineering and scientific data and assumptions leading to the selection of the oil spill model and development of the model itself.

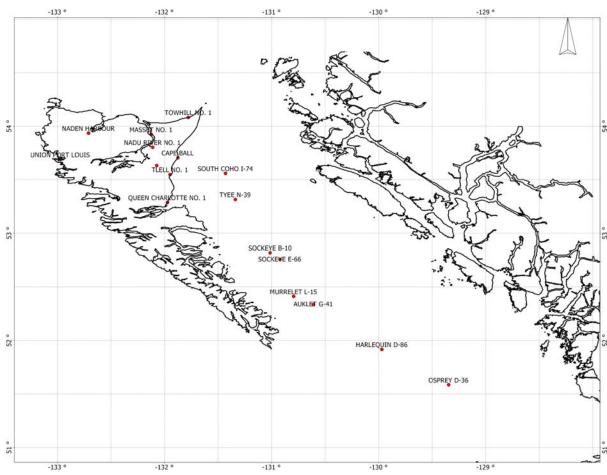
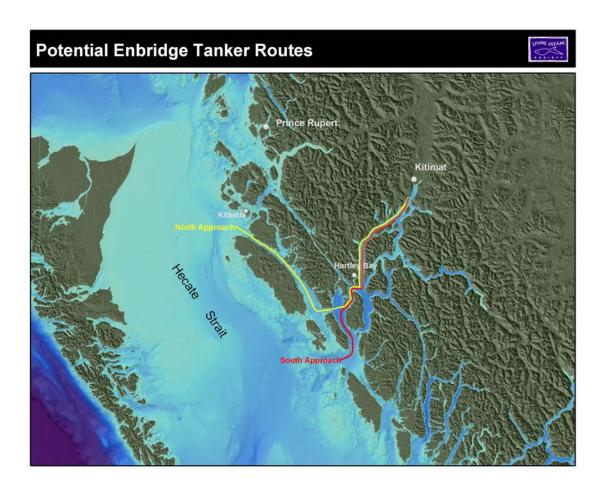



Figure 1: Exploratory Wells¹

¹ Created from GIS data provided on Ministry of Energy, Mines and Petroleum Resources website http://www.offshoreoilandgas.gov.bc.ca/offshore-map-gallery/download.htm on 2007 March 27.

Figure 2: Potential Shipping Routes - Douglas Channel²

1.1 MODEL SELECTION

Several oil spill modelling software packages were evaluated during the preparation of Triton's proposal for undertaking this modelling work. The report *A Review of Models in Support of Oil and Gas Exploration off the North Coast of British Columbia* (M.G.G. Foreman, et al, 2006) was reviewed for guidance in selecting the appropriate modelling tool. That report was prepared with an aim to select the best available global technology for modelling such phenomena. The key conclusions of the study were considered and many of the software packages identified in the report investigated including ASA's OILMAP, Sintef's OSCAR and US NOAA's GNOME. Triton investigated these three packages in detail and determined that each has its own relative advantages and disadvantages, but all three were deemed suitable for the present application.

GNOME was selected for the use in the present study for the following reasons:

The high cost of the commercial software (OILMAP and OSCAR) relative to the project budget

² Prepared by Living Oceans Society from data provided by Enbridge during the permit application process.

- The fact that the expectations of the present study are high but less onerous than for a real-time oil spill response scenario
- The fact that NOAA's GNOME experts are based in Washington State meant that support was readily available in person within a few hours drive, in the same time zone, and the model had been tested extensively, by NOAA, in West Coast waters.
- Colleagues in other engineering and oceanographic consulting firms had come to the same conclusion independently on other oil industry projects.

1.2 DESCRIPTION OF GNOME

GNOME is a publicly available³ oil spill trajectory model that simulates oil movement due to winds, currents, tides, spreading, evaporation and weathering. GNOME was developed by the Hazardous Materials Response Division (HAZMAT) of the National Oceanic and Atmospheric Administration Office of Response and Restoration (NOAA OR&R). HAZMAT uses this model during spill response to calculate a "best guess" of a spill's trajectory and the associated uncertainty in that trajectory.

To use GNOME, the user describes a spill scenario by entering information into the program; GNOME then creates and displays an oil spill "movie" showing the predicted trajectory of the oil spilled in the scenario. Typical GNOME users make use of NOAA-provided GNOME Location Files for their regions of interest; these files contain pre-packaged tide and current data, and make it easier to work with GNOME. However, for the present North Coast application, no Location Files presently exist in the GNOME database, requiring the use of GNOME in diagnostic mode⁴ and the development of the hydrodynamic database and tools described in Section 2 of this report. NOAA describes GNOME as "an excellent tool for creating scenarios and building intuition regarding oil spill trajectories at a particular location" that can:

- Estimate the trajectory of spills by processing user-provided information on wind and weather conditions, circulation patterns, river flow, and the oil spill(s) to be simulated.
- Predict the trajectories that can result from the inexactness (uncertainty) in current and wind observations and forecasts.
- Use weathering algorithms to make simple predictions about the changes the oil will undergo while it is exposed to the environment.
- Quickly be updated, re-run, and saved with new information.
- Provide trajectory output (including uncertainty estimates) in a geo-referenced format that can be used as input to GIS (geographic information system) programs.

The GNOME user manual (NOAA, 2002) is available online and provides an excellent tutorial on use of the model.

2.0 METHODOLOGY

The general approach taken by Triton for this study was to develop the necessary tools and to provide the technical advice which would allow Living Oceans to undertake their own spill analyses. This approach was adopted for a number of reasons including:

The requirement that the range of scenarios to be considered (i.e., spill location, type, size, date)
could not be specified a priori, since they require constant revision following consideration of
previous oil spill model results (i.e., the simulation parameters evolve as experience is gained
from previous simulations)

³ Available from http://response.restoration.noaa.gov/

⁴ Diagnostic Mode is designed primarily for expert modellers, such as contingency planners and the modellers who provide full tactical support for spill response teams.

- The cost efficiencies that this approach implies
- The simplification of communication between Living Oceans staff specifically responsible for the spill modelling, habitat experts and those responsible for dissemination of the information to the public.

This approach required completion of the following tasks prior to Living Ocean preparing simulations of the scenarios summarized in Appendix C

- Re-activation of archived files pertaining to an existing computational model grid of the northwest coast (Hecate Domain)
- Construction of a new computational model grid of Douglas Channel and adjacent channels (Douglas Domain) specifically for this project.
- Implementation of hydrodynamic models based on the Hecate and Douglas domains (both twodimensional and three-dimensional)
- Development of the a Windows-based conversion utility GNOMEUtil for converting the results of the hydrodynamic model to a format compatible with GNOME
- Compilation of wind data summaries and wind time series for use in the GNOME scenario modelling
- Training of Living Oceans personnel on the use of the conversion utility and the GNOME modeling system
- Documentation of key assumptions in this report to Living Oceans.

Each of these tasks is described in detailing in the following report sections.

2.1 REACTIVATION OF EXISTING HECATE DOMAIN GRID

Figure 3 shows the triangular finite element model grid of the Hecate Domain. This grid was originally developed by the Institute of Ocean Sciences (IOS) and consists of 7575 nodes⁵. Water depths in the Hecate model domain are shown in Figure 4.

The spatial resolution of this model is suitable for oil spill modeling in Hecate Strait and the open coast, but is insufficiently detailed for modelling spills within the coastal fjord system (see Section 2.2 Construction of Douglas Channel Grid)

_

⁵ For comparison, note that a typical NOAA GNOME domain has many fewer than 1000 nodes.

Figure 3: Hecate Domain - Grid Network

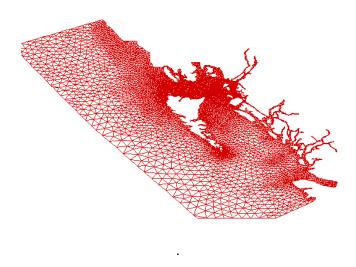
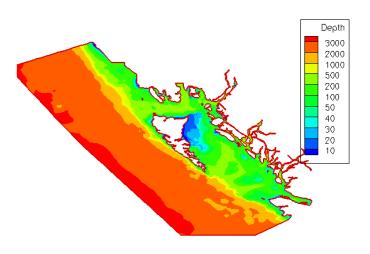



Figure 4: Hecate Domain - Water Depths (m)

2.2 CONSTRUCTION OF DOUGLAS CHANNEL GRID

As described in Section 2.1, the Hecate domain grid is too coarse to be used for modelling inter-coastal spills. It was therefore necessary to increase the number of computational triangles in regions of particular importance. However, Triton's experience had shown that a very significant effort was required to input the detailed information from each high resolution nautical chart and it was decided to concentrate on those areas of greatest interest to the Living Ocean Society; specifically areas centred on Douglas Channel encompassing marine developments at Kitimat and the proposed shipping route (see Figure 2).

Rather than dramatically increasing the number of computational nodes in the Hecate model by appending the high resolution Douglas region to it, it was decided to construct a second grid that could be used independently. The disadvantage of this approach was that the spills that propagate out of the Douglas domain into the Hecate domain would be more difficult to simulate; however, this was not seen as a major limitation relative to the major efficiency advantages of maintaining the modest size of the Hecate domain.

Significant challenges were encountered during compilation of the Douglas Channel grid, such as:

- Corrupt CHS fieldsheet files with regions of missing data that could not be identified until many days of manipulation were invested.
- Erroneous elevations of digital contours (e.g., some 20 fathom contours digitizes as 20 m)
- Apparent mixture of horizontal datums within a single dataset (NDI Environmental Dataset).

Eventually many of the relevant CHS nautical charts (CHS 3724, 3742, and 3743) had to be digitized by hand to provide a model grid that could be used with confidence. The above issues resulted in this portion of the work requiring two or three times the anticipated level of effort.

Figure 6 shows the computational grid network for the Douglas domain consisting of 158,328 nodes which is more than two orders of magnitude more detailed than a typical NOAA domain. Figure 5 shows the modelled variation of water depth across the domain.

Figure 5: Douglas Domain - Water Depth (m)

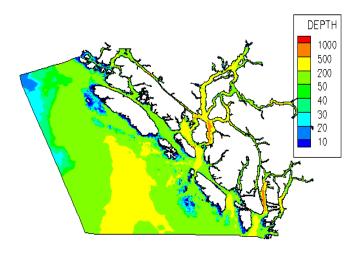
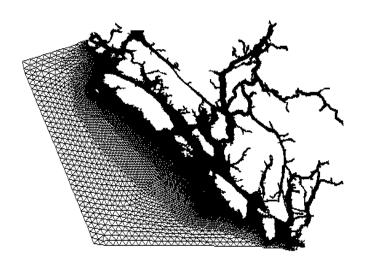



Figure 6: Douglas Domain - Grid Network

2.3 HYDRODYNAMIC MODEL SELECTION

The model grids described above were used in a series on numerical finite element hydrodynamic models to compute currents throughout the model domains. Triton made use of the finite element models developed by Dr. Roy Walters (formerly US Geological Survey and the New Zealand National Institute of Water and Atmospheric Research) including two harmonic models (Tide2D, Tide3D) and two timestepping models (RiCOM2D and RiCOM3D). These models have been used by the Institute of Ocean Sciences (DFO Sidney, B.C.), are well-respected within the scientific community and have proven to produce accurate estimates of hydrodynamic conditions as long as they are applied correctly and in the appropriate circumstances.

The relative benefits of the various models considered are summarized in Table 1.

Table 1: Model Comparison

Criterion	Harmonic Model (Tide2D, Tide3D)	Time-stepping Model (RiCOM2D, RiCOM3D)
Physics - Advection	Simplified treatment of advection	included
Physics – Density Effects	Included	Not included (in available version)
Modelling Consultant Involvement	Required for generation of initial harmonic database; not required to generate scenarios	Required for every scenario considered.
Ease of File Transfer	Files generated locally from database – no need to transfer	File size can reach 1GB; cannot be transferred by email and very difficult to transfer between team members - even by FTP

Triton's recommendation, which was accepted by Living Oceans, was that the modelling be done with Tide3D. Tide3D is a three-dimensional frequency domain solution to the non-linear, shallow water equations for sea level and velocity using a finite element discretisation in space and a harmonic expansion in time (Walters, 1987). Because the governing equations are elliptic, there are no stability criteria such as associated with hyperbolic time-stepping methods.

The shallow water equations can be written as:

Continuity

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (H + \eta) \overline{U} = 0$$

Momentum

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + f \times u + g\nabla \eta - \frac{\partial}{\partial z}(N\frac{\partial u}{\partial z}) = -\frac{g}{\rho_0} \int_{-\infty}^{\infty} \nabla \rho dz$$

where

$$N\frac{\partial u}{\partial z} = \Psi (z = 0)$$

$$N \frac{\partial u}{\partial z} = \tau IuIu \quad (z = -H)$$

The equations are approximated using standard Galerkin techniques. The spatial domain is discretised by defining a set of 2-dimensional triangular elements in the horizontal plane and sigma coordinates in the vertical. A standard Lagrangian basis of polynomial degree p is defined on the master element and this basis is used to interpolate variable quantities within each element.

The numerical solution applies harmonic decomposition of the governing shallow water equations and solves the equations in the frequency domain rather than using time-stepping procedures. This technique is exceptionally computationally efficient and is particularly suited to modeling tidal motions where the number of frequencies is small in number or for modeling steady state forcing mechanisms such as quasi-stationary wind/pressure systems or river flow.

Tide3D has two major limitations:

- Drying flats can not be modeled (no drying elements)
- Non-steady or non-harmonic forcing conditions cannot be modeled

Neither limitation is significant in the present application given the scale of the area modeled.

2.4 HYDRAULIC MODELLING

The harmonic tidal model was calibrated on the basis of available CHS tidal height data in the study region. Figure 7 and Figure 8 are plots of the variation of M2 (typical semi-diurnal) and K1 (typical diurnal) in the vicinity of Douglas Channel. The annotations indicate the CHS station name, the amplitude of the constituent in metres (black text), and the tidal phase relative to Greenwich (red text).

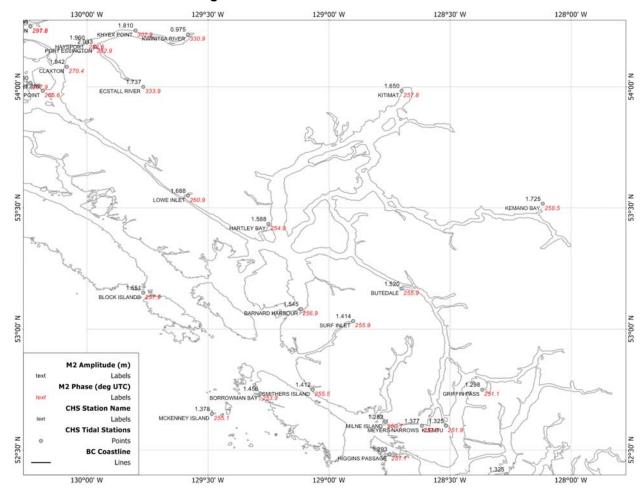


Figure 7: Measured CHS Variation of M2

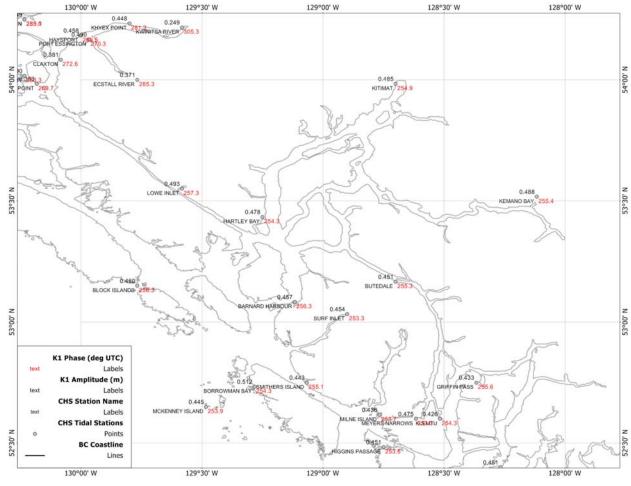


Figure 8: Measured CHS Variation of K1

Note that successful calibration of the model in this area implies good calibration in the majority of the exposed regions of the Douglas model and the vast majority of the Hecate domain, since the two domains are driven in series only from the western (open North Pacific) boundary of the Hecate domain.

Seasonal effects (January and July) were included by applying a monthly-averaged wind field, computing tidal residuals based on the eight tidal constituents, and including the effects of measured water density variations where available. Water density fields across the Hecate domain were computed from temperature and salinity data provided by Dr. Michael Foreman of the Institute of Ocean Sciences. Unfortunately, there was insufficient density data available in Douglas Channel to include these effects in the Douglas domain.

Figure 9: Modelled Variation of Tidal Constituent - M2

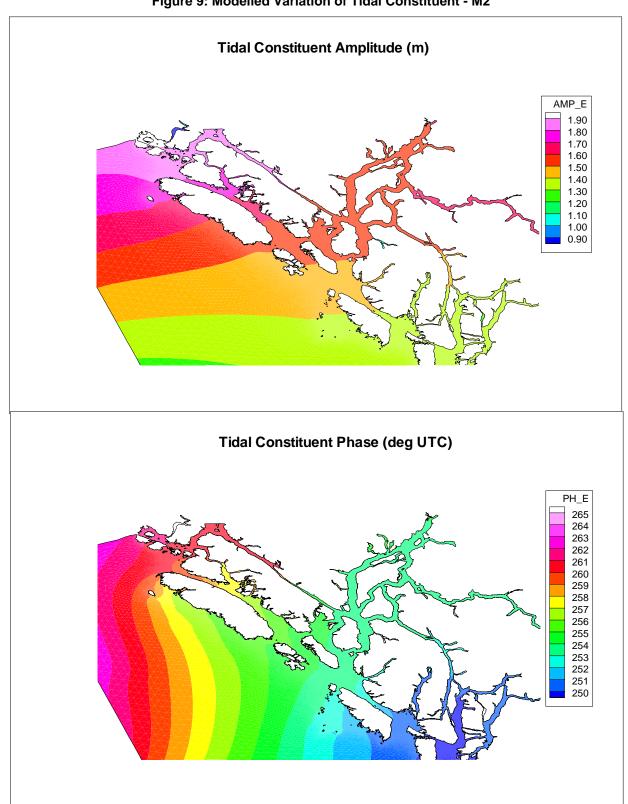
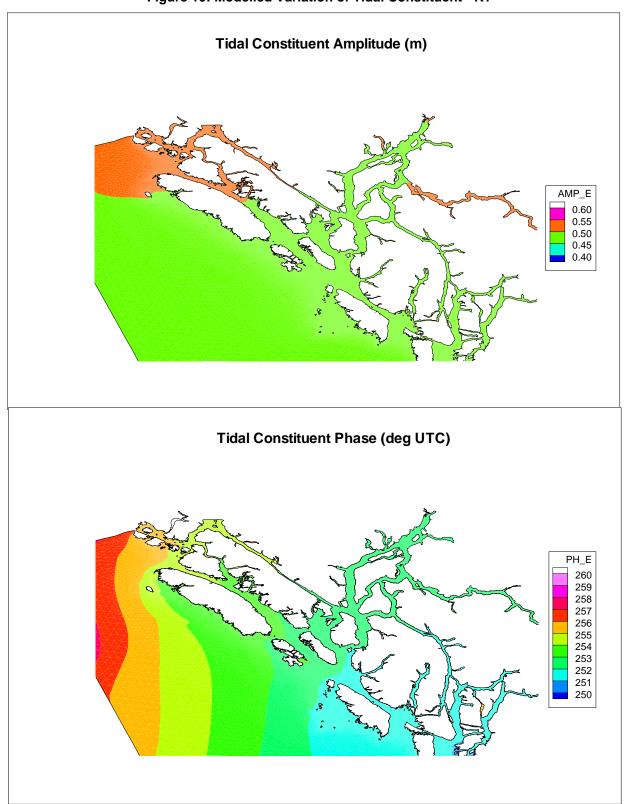



Figure 10: Modelled Variation of Tidal Constituent - K1

A comparison of Figure 7 with Figure 9 (M2) and Figure 8 with Figure 10 (K1) indicates that a good calibration, in terms of tidal height, had been achieved. Ideally, the model would then be verified against long-term current measurements at important locations. A search was undertaken for existing current data in the area of interest. This search yielded a series of oceanographic reports by Debrocky Seatech done 30 years ago (Webster, 1978) which included a number of oceanographic datasets and discussions that were useful but not sufficient for verification. As an alternative, a less rigorous but indicative verification was made against maximum tidal currents indicated on the CHS charts.

2.5 DEVELOPMENT OF GNOMEUTIL

A key aspect of the project was the development of a utility to generate a database of GNOME-compatible (time-stepping) hydrodynamic files covering the area of interest from the Tide3D harmonic database. The utility was developed using Microsoft .NET languages and was named GNOMEUtil. The utility runs on Windows-based computers with the Microsoft .NET framework 1.1 installed, or on Linux, Solaris, Mac OS X, Windows, and Unix machines with Mono framework 1.2 installed.

Below are a number of screenshots demonstrating the use of the utility. When the utility is launched, the user is prompted to browse to the folder containing the Tide3D database. Figure 11 is the first tab of the input dialog which solicits the name of the GNOME time-varying current file (*.cur), an overall scale factor (usually 1.0), along- and cross-axis uncertainty (NOAA recommends 50% and 25% respectively, minimum uncertainty (not presently used in GNOME), and any user specified comments.

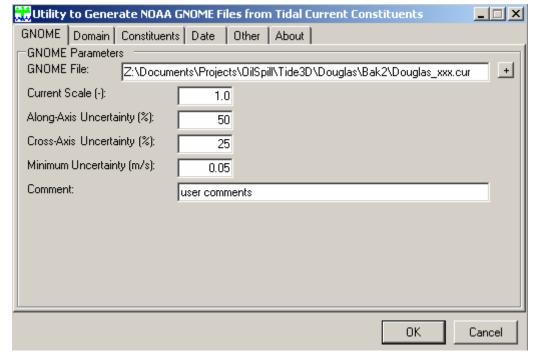


Figure 11: GNOMEUtil - GNOME Tab

Figure 12 shows the second tab of the input dialog which solicits the name of the nodal neighbours file (*.ngh), the triangular element topology file (*.ele), and the option to read an existing GNOME currents file (*.cur) which greatly improves the speed with which the output currents file is read by GNOME.

GNOME Domain Constituents Date Other About Domain NGH File: Z:\Documents\Projects\DilSpill\Tide3D\Douglas\Bak2\Douglas.ngh + ELE File: Z:\Documents\Projects\DilSpill\Tide3D\Douglas\Bak2\Douglas.rtr + Reuse Existing Topology

CUR File: Z:\Documents\Projects\DilSpill\Tide3D\Douglas\Bak2\DouglaswithTop.cur +

Figure 12: GNOMEUtil - Domain Tab

Figure 13 shows the third tab of the input dialog which solicits up to ten Tide3D harmonic constituent model output files (*.mop) such as M2 (twice-a-day effect of the moon), S2 (twice-a-day effect of the sun) and Z0 (tidal residual, seasonally constant component).

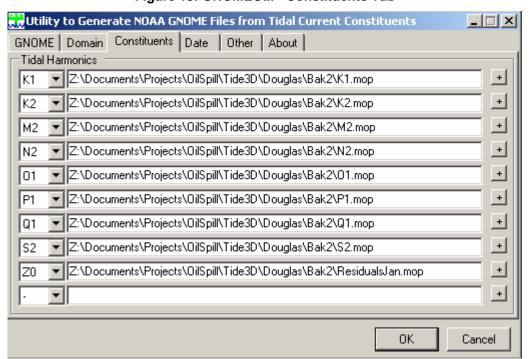


Figure 13: GNOMEUtil - Constituents Tab

Figure 14 allows the user to specify the starting Coordinated Universal Time (UTC), desired duration of the simulation in hours, and the time interval between surface current velocity fields⁶.

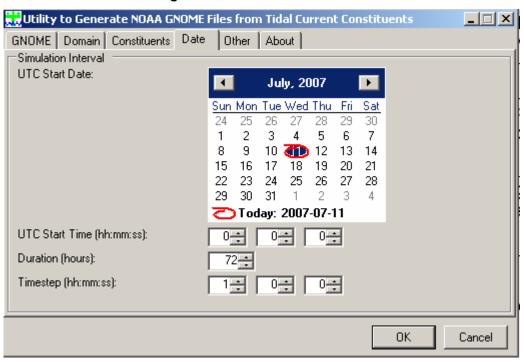


Figure 14: GNOMEUtil - Date Tab

Figure 15 is the final tab of the dialog box requesting the user to specify whether the harmonic database files (*.mop) are from a Tide2D or Tide3D simulation, and the typical latitude of the domain for tidal prediction.

⁶ Typically one hour; GNOME interpolates linearly to the specified timestep of the spill simulation (typically 15 minutes).

GNOME Domain Constituents Date Other About

Other Typical Latitude (deg):

Hydro. Model:

Tide3D

OK

Cancel

Figure 15: GNOMEUtil - Other Tab

This development of GNOMEUtil meant that it was now possible to generate a large number of hydrodynamic files from the hydrodynamic models results which could represent typical tidal and non-tidal currents at each vertex of the Hecate and Douglas domain grids.

2.6 WIND FIELDS

GNOME provides the ability to model a time-varying spatially-uniform wind as a universal spill mover. Available wind data from the Marine Environmental Data Service stations identified in Table 2 and plotted in Figure 16 were compiled and formatted for use in GNOME. These stations are marine buoys which measure true overwater winds. Therefore, no modifications of the raw wind measurements were required prior to reformatting into a GNOME-compatible format.

Station Latitude Location Longitude (deg W) (deg N) West Dixon Entrance (C46205) 54.30 133.40 2 Central Dixon Entrance (C46145) 54.38 132.43 3 North Hecate Strait (C46183) 53.57 131.14 4 West Moresby (C46208) 52.50 132.70 5 South Moresby (C46147) 51.82 131.20 6 East Dellwood (C46207) 50.86 129.91 7 49.73 127.92 South Brooks (C46132) Nanakwa Shoal (C46181) 53.82 128.84 8 9 South Hecate Strait (C46185) 52.42 129.80

Table 2: MEDS Wind Stations

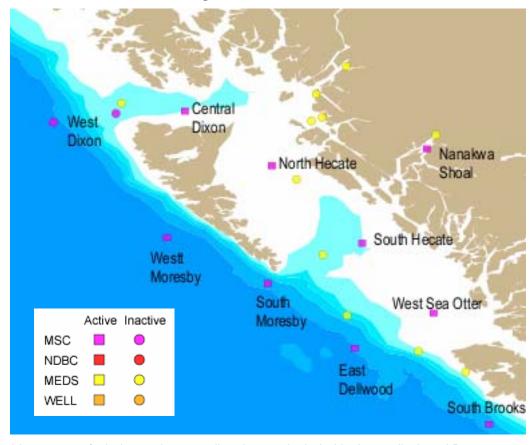
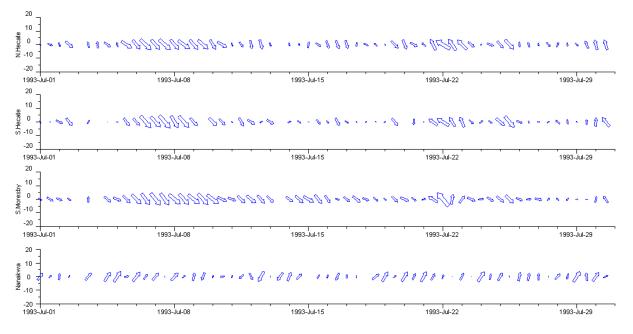


Figure 16: Wind Stations

Bivariate histograms of wind speed versus direction are included in Appendix A and B.


Several questions arose over the course of the project concerning the most appropriate wind station to use in a specific spill simulation. Fortunately, the spatial variation of wind in Hecate Strait is modest (see Figure 17 and Figure 18).

20 10 -20 1999-Jan-15 1999-Jan-01 20 10 -20 1999-Jan-01 1999-Jan-08 1999-Jan-15 1999-Jan-22 1999-Jan-29 20 10 S.Moresby 0 -20 1999-Jan-01 1999-Jan-15 20 10 0 -20 + 1999-Jan-01

Figure 17: Sample Spatial Variation of Wind - January

Monthly average (January and July) wind fields were computed from the available buoy data which were used in the hydraulic modelling.

2.7 GNOME MODELLING

As noted previously, the actual GNOME spill modelling was undertaken by Living Oceans personnel. Appendix C contains a summary of the final scenarios as modelled. The results of these simulations are

presented on Living Oceans' website (<u>www.livingoceans.org</u>). It is beyond the scope of this report to describe the details of these simulations.

3.0 REFERENCES

Foreman, M.G.G., L. Beauchemin, J.Y. Cherniawsky, M.A. Peña, P. F. Cummins, and G. Sutherland, 2006. *A Review of Models in Support of Oil and Gas Exploration off the North Coast of British Columbia*. Institute of Ocean Sciences. Canadian Technical Report of Fisheries and Aquatic Sciences 2612.

NOAA, 2002. GNOME General NOAA Oil Modelling Environment - User's Manual. January.

NOAA, 2005. GNOME - General NOAA Oil Modelling Environment – Data Formats. April.

Walters, R.A. "The frontal method in hydrodynamics simulations", *Computers and Fluids*, **8**, (1980) 265-272.

Walters, R.A. "A model for tides and currents in the English Channel and southern North Sea", Advances in Water Resources, 10, (1987) pp 138-148.

Walters, R.A. and F.E. Werner, "Nonlinear generation of overtides, compound tides, and residuals", in Tidal Hydrodynamics (B.B. Parker, ed). John Wiley and Sons, (1991).

Webster, Ian, 1978. Kitimat Physical Oceanography Study 1977-1978. Institute of Ocean Sciences Contract Report Series 80. Six volumes.

Appendix A – Wind Speed/Wind Direction Histograms - January

Page 1 of 2 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:00:16

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (1,1,1)
Station: West Dixon Entrance

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (1,1,1)

Station: West Dixon Entrance

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 12456

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 67.5 Total 337.5 22.5 SE NEΕ S SW W NW /Variables/Node 1988/U (m/s) Total Observations (Count)

/variable	es/Node_	_1988/U (M/	'I'O1	s (Count	.)					
Calm	1128									
0.00	549	127	66	72	53	56	51	64	60	
2.50		253	164	216	224	295	249	187	172	
5.00		398	306	396	360	432	428	311	251	
7.50		378	86	409	441	526	368	283	274	
10.00		115	26	257	465	493	172	191	129	
12.50										
15.00	1018	38	14	158	399	251	61	71	26	
17.50		37	7	52	191	60	16	13	4	
20.00	108	4	2	10	78	11	0	3	0	
22.50	18	0	0	2	16	0	0	0	0	
Total	12456	1350	671	1572	2227	2124	1345	1123	916	

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 2

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:00:58

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (2,1,1)

Station: Central Dixon Entrance

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (2,1,1)

Station: Central Dixon Entrance

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Total

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): Actual Number of Valid Observations in Specified Time Interval (-):

/Variables/Node 1988/UDir (from deg T) 67.5 112.5 157.5 202.5 247.5 292.5 Total 337.5 22.5 337.5 S Ν NEΕ SE SW

/Variables/Node 1988/U (m/s) Total Observations (Count) Calm 0.00 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 22.50

WindScatterNorthHecateStraitJan.OUT Printed: Thursday, 2007 July 12 14:18:31

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 2

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 08:59:07

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (3,1,1)

Station: North Hecate Strait

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (3,1,1)

Station: North Hecate Strait

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 10542

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 NEЕ SE S SW W /Variables/Node 1988/U (m/s) Total Observations (Count)

	_		,						`	,
Calm	1274									
0.00	0.15	1.60	0.0	120	101	100	4.5	0.0		
2.50	817	162	93	130	191	108	47	29	57	
	1429	323	201	237	187	146	118	101	116	
5.00	2042	504	122	237	325	258	269	162	165	
7.50	2044	379	60	215	499	414	199	116	162	
10.00	1415	139	17	157	589	346	46	48	73	
12.50	819	34	15	60	500	174	8	16	12	
15.00										
17 50	392	14	9	11	306	39	1	7	5	
17.50	182	0	1	6	150	18	1	4	2	
20.00										
22.50	29	3	3	1	18	1	1	0	2	
22.30	11	4	2	2	3	0	0	0	0	
25.00										

WindScatterNorthHecateStraitJan.OUT Printed: Thursday, 2007 July 12 14:18:31

Printed:	Thursday,	2007 July	12	14:18:3	1			Prin	ted For	: Max Larson
	11	2	1	4	2	0	0	1	1	
27.50	7	2	1	1	0	1	2	0	0	
30.00	7	2	1	0	0	0	1	0	3	
32.50										
35.00	12	3	0	0	1	1	1	4	2	
	7	1	0	1	1	1	0	0	3	
37.50	11	3	0	0	3	0	2	1	2	
40.00	11	0	0	4	1	0	1	2	3	
42.50										
45.00	7	2	1	1	0	0	0	0	3	
	6	1	1	3	0	0	0	0	1	
47.50	3	1	0	1	1	0	0	0	0	
50.00	6	0	0	0	2	0	0	2	2	
999.00	Ü	Ü	J	Ü	2	Ü	Ü	2	2	
Total	10542	1579	528	1071	2779	1507	697	493	614	

Page 2 of 2

WindScatterWestMoresbyJan.OUT Page 1 of 2 Printed: Thursday, 2007 July 12 14:19:33 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:01:41

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (4,1,1)

Station: West Moresby

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (4,1,1)Station: West Moresby

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 10000

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 NEΕ SE S SW W /Variables/Node 1988/U (m/s) Total Observations (Count)

										
Calm	756									
0.00	739	105	73	109	104	99	102	82	64	
2.50	139	105	73	109	104	99	103	02	04	
5.00	1496	204	117	152	236	264	210	163	150	
3.00	1995	216	80	161	388	370	267	305	208	
7.50	1333	210	00	101	300	370	207	303	200	
	2228	171	57	228	544	431	244	291	262	
10.00	1500	73	13	168	485	287	157	174	143	
12.50	1300	75	13	100	403	207	137	1/4	143	
	839	27	12	116	346	137	69	57	75	
15.00	261	1 =	4	4.4	107	F 0	1.0	2.0	17	
17.50	361	15	4	44	187	50	16	28	17	
17.50	73	2	1	9	45	1	5	9	1	
20.00										
	12	0	0	3	6	0	3	0	0	
22.50	1	0	0	0	1	0	0	0	0	
25.00	1	U	U	U	1	U	U	U	U	

WindScatterWestMoresbyJan.OUT Printed: Thursday, 2007 July 12 14:19:33

Total 10000 813 357 990 2342 1639 1074 1109 920

Page 2 of 2

Printed For: Max Larson

WindScatterSouthMoresbyJan.OUT Printed: Thursday, 2007 July 12 14:19:04

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 2

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:02:27

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (5,1,1)

Station: South Moresby

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (5,1,1)

Station: South Moresby

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 6354

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 NEΕ SE S SW W /Variables/Node 1988/U (m/s) Total Observations (Count)

Calm	1882									
0.00	205	26	26	22	38	2.2	27	24	10	
2.50	205	20	20	22	38	23	21	24	19	
5.00	638	98	74	48	79	96	102	67	74	
	1065	128	114	103	187	171	128	133	101	
7.50	1064	77	109	111	160	246	134	110	117	
10.00	814	23	66	85	240	157	101	68	74	
12.50										
15.00	372	3	23	49	145	58	36	31	27	
	203	6	2	19	113	38	13	11	1	
17.50	54	5	4	3	33	5	2	1	1	
20.00										
22.50	17	1	0	2	9	1	2	1	1	
	10	0	0	2	3	3	0	2	0	
25.00										

		resbyJan.OU 2007 July		14:19:04				Printed		age : Max	
	7	0	0	3	2	2	0	0	0		
27.50	5	0	0	3	2	0	0	0	0		
30.00	5	U	U	3	Z	U	U	0	0		
	6	0	1	3	1	1	0	0	0		
32.50	4	0	0	1	1	1	0	0	1		
35.00	3	1	0	1	1	0	0	0	0		
37.50	1	0	0	0	1	0	0	0	0		
40.00	_	•	•		_				-		
40 50	2	0	1	0	1	0	0	0	0		
42.50	1	0	0	0	1	0	0	0	0		
45.00	1	0	0	1	0	0	0	0	0		
47.50	1	U	U	Τ	U	U	U	U	U		

456 1017 802

545

448

416

Total

6354 368 420

WindScatterEastDellwoodJan.OUT Printed: Thursday, 2007 July 12 14:17:54

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 2

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:03:20

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (6,1,1) Station: East Dellwood

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (6,1,1) Station: East Dellwood

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 11086

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 67.5 Total 337.5 22.5 337.5 SE S NE Ε SW /Variables/Node 1988/U (m/s) Total Observations (Count)

Calm	2426									
0.00	368	32	28	42	73	42	45	49	57	
2.50	300	32	20	42	73	42	43	49	37	
2.30	1147	129	119	95	152	189	188	141	134	
5.00										
7 50	2148	310	225	158	279	413	309	253	201	
7.50	2069	262	144	105	344	534	312	196	172	
10.00	2005	202		103	511	331	312	130	1,2	
	1475	121	70	47	360	401	236	149	91	
12.50	798	45	2.2	2.1	227	226	60	52	35	
15.00	798	45	32	21	327	226	60	52	33	
10.00	465	9	29	13	264	104	18	24	4	
17.50								_		
20.00	161	0	0	1	128	18	10	4	0	
20.00	22	0	0	0	22	0	0	0	0	
22.50		· ·	ŭ	ŭ		ŭ	· ·	· ·	ŭ	
	7	0	0	0	7	0	0	0	0	
25.00										

WindScatterEastDellwoodJan.OUT Printed: Thursday, 2007 July 12 14:17:54

Total 11086 908 647 482 1956 1927 1178 868 694

Page 2 of 2

Printed For: Max Larson

WindScatterSouthBrooksJan.OUT Page 1 of 2 Printed: Thursday, 2007 July 12 14:18:48 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:04:07

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (7,1,1)

Station: South Brooks

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (7,1,1)

Station: South Brooks

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 7372

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 NEЕ SE S SW W /Variables/Node 1988/U (m/s) Total Observations (Count)

Calm	413									
0.00										
2.50	500	51	47	101	74	55	54	54	64	
	1237	140	83	196	206	161	155	127	169	
5.00	1375	156	35	128	270	282	176	152	176	
7.50	1453	149	35	82	429	296	133	141	188	
10.00										
12.50	1158	53	7	32	490	181	77	104	214	
	681	33	0	8	434	86	34	19	67	
15.00	374	0	0	6	320	15	6	14	13	
17.50	137	0	0	5	124	3	4	1	0	
20.00										
22.50	39	0	0	4	35	0	0	0	0	
	4	0	0	0	4	0	0	0	0	
25.00										

WindScatterSouthBrooksJan.OUT Printed: Thursday, 2007 July 12 14:18:48

Printed: Thursday, 2007 Ju			12	14:18:48	В		Prin	Printed For: Max Larson			
27.50		0	0	0	1	0	0	0	0		
Total	7372	582	207	562	2387	1079	639	612	891		

Page 2 of 2

WindScatterNanakwaJan.OUT Page 1 of 1 Printed: Thursday, 2007 July 12 14:18:13 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-07-12 14:13:26

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (8,1,1)
Station: Nanakwa Shoal

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (8,1,1)

Station: Nanakwa Shoal

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 1 1 1 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 10824

/Variables/Node 1988/UDir (from deg T) 67.5 112.5 157.5 202.5 247.5 292.5 337.5

Total Observations (Count) Total 337.5 22.5 /Variables/Node 1988/U (m/s)

Calm	680									
0.00	2404	503	446	71	48	100	261	574	401	
2.50		245	759	27	25	204	327	166	116	
5.00	1811	205	888	16	6	304	360	20	12	
7.50	1762	246	1159	13	4	169	165	4	2	
10.00 12.50	1408	225	1081	5	3	33	59	2	0	
15.00	765	58	689	0	0	2	15	0	1	
17.50	124	4	119	0	0	0	1	0	0	
20.00	1	0	1	0	0	0	0	0	0	
Total	10824	1486	5142	132	86	812	1188	766	532	

Appendix B – Wind Speed/Wind Direction Histograms – July

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 1

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:31:14

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (1,1,1)

Station: West Dixon Entrance

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

/Variables/Node 1988/UDir (from deg T)

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (1,1,1)

Station: West Dixon Entrance

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 11874

112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 NEЕ SE S SW W /Variables/Node 1988/U (m/s) Total Observations (Count)

Calm	809									
0.00	1086	95	68	123	115	142	215	180	148	
2.50 5.00	3791	245	125	182	327	606	710	920	676	
7.50	4015	125	54	104	389	698	509	941	1195	
10.00	1716	34	23	51	265	287	68	121	867	
12.50	413	7	11	24	101	61	19	13	177	
15.00	41	0	0	8	12	4	0	0	17	
17.50	3	0	0	1	0	1	1	0	0	
Total	11874	506	281	493	1209	1799	1522	2175	3080	

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 2

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:32:50

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (2,1,1)

Station: Central Dixon Entrance

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (2,1,1)

Station: Central Dixon Entrance

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 11185

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 67.5 Total 337.5 22.5 337.5 SE S NE Ε SW /Variables/Node 1988/U (m/s) Total Observations (Count)

	-	_ `	,						•	,
Calm	146									
0.00	1 4 2 1	140	125	100	207	170	105	222	162	
2.50	1431	149	135	189	207	170	185	233	163	
	3349	83	134	451	577	282	412	1090	320	
5.00	3408	9	31	360	515	77	194	1795	427	
7.50	1980	11	26	121	317	16	23	990	476	
10.00										
12.50	670	14	13	37	60	18	17	276	235	
	156	17	6	12	11	14	11	45	40	
15.00	34	2	5	3	7	4	1	7	5	
17.50		_	_	_	·	_	_	•	_	
	8	0	0	0	0	0	1	4	3	
20.00	3	1	0	0	0	0	1	0	1	
22.50	3	1	O	Ū	O	O .	1	Ū	_	
Total	11185	286	350	1173	1694	581	845	4440	1670	

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 1

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:33:41

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (3,1,1)

Station: North Hecate Strait

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (3,1,1)

Station: North Hecate Strait

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 10285

/Variables/Node 1988/UDir (from deg T) 112.5 157.5 202.5 247.5 292.5 337.5 Total 337.5 22.5 67.5 S Ν NEΕ SE SW W NW /v

/Variable	es/Node_	_1988/U (m/s)	_		Tot	al Obse	rvations	(Count)
Calm	708								
0.00	1570	220	175	170	220	244	174	155	105
2.50	1579	229	175	178	239	244	174	155	185
5.00	2783	533	134	121	574	498	184	192	547
	2549	427	15	42	904	283	27	78	773
7.50	1787	63	2	36	568	130	2	22	964
10.00	744	2	1	18	369	29	0	12	313
12.50	117	0	0	5	101	3	0	1	7
15.00	16	0	0	0	16	0	0	0	0
17.50	2	0	0	0	2	0	0	0	0
20.00	2	U	U	U	2	U	U	U	U
Total	10285	1254	327	400	2773	1187	387	460	2789

WindScatterWestMoresbyJul.OUT Printed: Thursday, 2007 July 12 14:19:41

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 1

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:34:29

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node_1988/U

(i,j,k): (4,1,1)

Station: West Moresby

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

260 1184 1381 1320 1879 4545

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (4,1,1) Station: West Moresby

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Total 11317 321 102

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): Actual Number of Valid Observations in Specified Time Interval (-):

		337.5 22.5 N e_1988/U (m/s)	NE			202.5 S	247.5 SW	292. W	rom deg T) 5 337.5 NW s (Count)
Calm	325								
0.00 2.50	1000	65	48	70	127	166	172	209	143
5.00	3474	102	34	60	305	566	651	930	826
7.50	3631	75	13	40	371	445	372	632	1683
10.00	1940	42	5	40	278	162	114	103	1196
12.50	762	31	2	32	92	38	11	5	551
15.00	177	6	0	11	11	3	0	0	146
17.50	8	0	0	7	0	1	0	0	0

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 1

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:35:14

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (5,1,1)

Station: South Moresby

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

/Variables/Node 1988/UDir (from deg T)

0

0

815

0

0

1419

5

0

2791

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (5,1,1)

Station: South Moresby

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

17

3

7008

15.00

17.50

Total

0

0

79

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 7008

Í	Total	337.5	22.5 N	67.5 NE	112.5 E	157.5 SE	202.5 S	247.5 SW	292.! W	337.5 NW
/Variabl	es/Nod	e_1988/		NE	Ti-	DE	-			(Count)
Calm	318									
0.00										
2.50	843		31	38	62	104	200	173	150	85
	2171		25	25	85	203	334	408	647	444
5.00	2223		16	9	27	124	154	178	540	1175
7.50	1119		7	9	12	65	75	44	73	834
10.00			•							
12.50	314		0	2	4	23	16	12	9	248

1

0

191

7

3

529

2

0

781

2

0

85

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Page 1 of 1

Printed For: Max Larson

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:36:17

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node_1988/U

(i,j,k): (6,1,1)
Station: East Dellwood

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (6,1,1) Station: East Dellwood

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 9826

/Variables/Node 1988/UDir (from deg T) Total 337.5 22.5 67.5 112.5 157.5 202.5 247.5 292.5 337.5 N NE E /Variables/Node 1988/U (m/s) S SW W SE NW Total Observations (Count)

/Variable	s/Node_	1988/U (m/s	5)			Tot	cal Obse	ervation	ns (Count	-)
Calm	784									
0.00	717	68	21	20	59	120	156	150	122	
2.50	747	00	31	38	39	120	156	152	123	
	2543	117	37	33	114	300	528	719	695	
5.00	2125	150	27	21	122	348	220	400	1629	
7.50	3135	150	21	21	132	348	338	490	1029	
	2170	151	10	5	90	200	75	68	1571	
10.00	409	35	2	1	57	56	5	4	249	
12.50	403	33	_			30	3	-1	243	
15 00	30	1	0	3	18	4	1	0	3	
15.00	7	0	0	0	7	0	0	0	0	
17.50										
20.00	1	0	0	0	1	0	0	0	0	
Total	9826	522	107	101	478	1028	1103	1433	4270	

WindScatterSouthBrooksJul.OUT Page 1 of 1 Printed: Thursday, 2007 July 12 14:18:56 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-05-22 09:36:58

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (7,1,1) Station: South Brooks

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (7,1,1) Station: South Brooks

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Total

6927

123

59

Potential Number of Observations in Specified Time Interval (-): Actual Number of Valid Observations in Specified Time Interval (-):

		337.5 22.5 N e_1988/U (m/s)	NE			202.5 S	247.5 SW	292.5 W	om deg T) 337.5 NW (Count)
Calm	1456								
0.00 2.50	728	59	48	45	81	113	126	144	112
5.00	1261	37	11	41	170	214	169	286	333
7.50	1112	16	0	19	145	108	52	111	661
10.00	1052	7	0	3	171	49	4	8	810
12.50	1044	4	0	0	71	16	0	0	953
15.00	273	0	0	0	22	0	0	0	251
17.50	1	0	0	0	0	0	0	0	1

108

660

500

351

549

3121

WindScatterNanakwaJul.OUT Page 1 of 1 Printed: Thursday, 2007 July 12 14:18:22 Printed For: Max Larson

COASTAL ENGINEERING ANALYSIS PACKAGE CEAData - Bivariate Histogram

Project Number: 07-101

Client: Living Oceans Society

Description: North Coast Oil Spill Modelling

Analyst: M.R. Larson

Analysis Date: 2007-07-12 14:14:46

INPUT PARAMETERS

Row Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node_1988 Dataset (-): /Variables/Node 1988/U

(i,j,k): (8,1,1)
Station: Nanakwa Shoal

Column Variable

File (-): Z:\Documents\Projects\OilSpill\Wind\QCWind.h5

Group (-): /Variables/Node 1988

Dataset (-): /Variables/Node 1988/UDir

(i,j,k): (8,1,1)

Station: Nanakwa Shoal

Time Screening

Start Time (YYYY MM DD HH:MN:SS): 1988-01-01 00:00:00 Stop Time (YYYY MM DD HH:MN:SS): 2007-12-31 23:00:00 Season of Interest (MM DD MM DD): 7 1 7 31

Hours of Interest: All

Parameter Screening

Parameter Screening: None (All Valid Records)

OUTPUT PARAMETERS

Potential Number of Observations in Specified Time Interval (-): 14880 Actual Number of Valid Observations in Specified Time Interval (-): 8878

/Variables/Node 1988/UDir (from deg T) 67.5 112.5 157.5 202.5 247.5 292.5 337.5

Total Observations (Count) Total 337.5 22.5 /Variables/Node 1988/U (m/s)

Calm	442									
0.00	1966	246	200	56	65	435	532	274	158	
2.50	2500	83	305	4	6	932	1111	49	10	
5.00	2849	24	172	1	3	860	1785	3	1	
7.50 10.00	1036	6	68	0	1	159	801	1	0	
12.50	85	0	8	0	0	4	73	0	0	
Total	8878	359	753	61	75	2390	4302	327	169	

Appendix C – GNOME Scenario Summary

Scenario	Scenario	Spill La	atitude	Spill Lor	ngitude	Spill	Spill	Simulation/Spill Start	Spill Stop	Simulation Stop	Model	Wind File
No.	Name	deg N	min	deg W	min	Type	Amount	UTC	UTC	UTC		
1	NessWinter	52	50.543	129	44.295	med. crude	11 million gallons	2007-Jan-01 00:00	2007-Jan-10 16:30	2007-Feb-01 00:00	Hecate	NS SM Jan 07 combo.WND
2	Ness Summer	52	50.543	129	44.295	med crude	257000 barrels	2007-Jul-01 00:00	2007-Jul-10 16:30	2007-Aug-01 00:00	Hecate	South Moresby July 31 93 06.WND
3	Grenville Winter	54	2.440	130	53.850	med crude	257000 barrels	2007-Jan-01 00:00	2007-Jan-10 16:30	2007-Jan-15 00:00	Hecate	NHS Jan 98 - 07.WND
4	Grenville Summer	54	2.440	130	53.850	med crude	700 tonnes	2007-Jul-01 00:00	2007-Jul-03 00:00	2007-Jul-12 00:00	Hecate	NHS July 98 -06. WND
5	Fin Island Winter	53	17.130	129	18.040	med crude	10000 barrels	2007-Jan-01 00:00	2007-Jan-01 04:00	2007-Jan-15 00:00	Douglas	Nanakwa Shoal Jan 07.WND
6	Fin Island Summer	53	17.130	129	18.040	med crude	10000 barrels	2007-Jul-01 00:00	2007-Jul-01 04:00	2007-Jul-15 00:00	Douglas	NS July 05 06 14 dys.WND
7	Sockeye B10 Winter	52	49.140	131	0.730	med crude	1000 barrels	2007-Jan-01 00:00	2007-Jan-01 04:00	2007-Feb-01 00:00	Hecate	SM Jan 05 - 07.WND
8	Sockeye B10 Summer	52	49.140	131	0.730	med crude	1000 barrels	2007-Jul-01 00:00	2007-Jul-01 04:00	2007-Aug-01 00:00	Hecate	South Moresby July 31 93 06.WND
GENERAL	. NOTES:											
1	All simulations done with	unsteady	wind as u	niversal mo	over							
2	All simulations done with	diffusion i	mover (diff	fusion coef	ficient of	100,000 cm ² /s	uncertainty factor 2.	0)				
3	General model settings: i	nclude mi	nimum reg	gret, prever	nt land jun	nping						
4	4 Computational timestep of 15 minutes used throughout											
	Refloat half life set to 72											
6	All simulations based on	harmonic	prediction	using eigh	it major tid	dal constituent	S					
7	7 All other GNOME parameters set to their default values											